Adam Prpick

Petroleum Engineer in Training (EIT) with APEGA

View the interactive online version of this resume at: adamprpick.com

About Me

I'm a Petroleum Engineer-in-Training (EIT) with APEGA, with growing experience in machine learning, web development, and cloud deployment. I've developed and deployed multiple ML-powered applications using tools like Flask, TensorFlow, and SHAP, hosted on platforms such as Azure and Heroku. My work focuses on building practical, user-focused solutions from complex data.

Skills

- Languages & Frameworks: Python (Pandas, NumPy, Scikit-learn, TensorFlow/Keras, SHAP, Joblib, Flask), HTML, CSS, JavaScript, Lua, VBA
- Machine Learning & AI: Model training, interpretability (SHAP), neural networks, deployment pipelines
- Web Development: Flask web apps, Heroku deployment, interactive frontends
- Cloud & DevOps: Azure ML SDK, Docker, Azure Container Apps
- Visualization & Analysis: Matplotlib, Seaborn

Education

Petroleum Systems Engineering University of Regina | 2023

Projects

View details, live demos, and source code at adamprpick.com

Insurance Cost Prediction App

A Flask-based web app that predicts U.S. health insurance costs using a linear regression model trained with Azure Machine Learning ($R^2 = 0.95$). Built with data from a public dataset and deployed on Heroku.

Loan Approval Prediction App

A Flask-based app that predicts SBA loan outcomes based on userprovided business details. Trained using Azure Machine Learning with a neural network model on a public dataset. Deployed on Heroku.

Capstone Design Project: Design and Optimization of a Greenhouse Gas Mitigation Approach - From Capture to Utilization in Northminster Field

A petroleum engineering capstone project completed at the University of Regina, in collaboration with Abdulqadir Abdi. This project addressed Canada's initiative to mitigate greenhouse gas emissions by integrating CO₂ capture from industrial sources with Enhanced Oil Recovery (EOR) and sequestration in the depleted Northminster Field, Saskatchewan.

Methods: The workflow included: (1) Sourcing historical data via AccuMap, (2) Constructing a geological reservoir model, and (3) Utilizing CMG-GEM and CMOST for fluid modeling, history matching, and optimizing three CO₂ injection schemes to balance oil recovery and carbon storage.

Results: The optimal scheme (Case 2) achieved 156,129 tons of CO_2 sequestration and 52,302 barrels of oil production over the well's life, with an injection rate of 82 tons/day. The net present value reached \$57,000 with a \$85/ton CO_2 credit, underscoring the economic viability post-1995 with carbon tax incentives. Comparative trials showed varying oil output and CO_2 injection efficiency.

Impact: This project demonstrated a sustainable approach to oil recovery while mitigating environmental impact, with potential applications in carbon credit markets.

Tools: AccuMap, CMG-GEM, CMOST, economic modeling **Authors:** Adam Prpick, Abdulqadir Abdi

Acknowledgments: Grateful to Dr. Michael Dent (IDTechEx Research), faculty members, and external representatives Dr. Farshid Torabi and Dr. Sam Hong for guidance. Thanks to the University of Regina for resources.

Contact

Email: aprpick@gmail.com

LinkedIn: linkedin.com/in/a-p-0b319520b

GitHub: github.com/aprpick